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Popular Summary 

Remote sensing of snow depth has been used to infer snow depth for many years. 
Passive microwave remote sensing of snow depth is compared with the snow gauge data. 

Statement of Significance 

Passive microwave remote sensing of snowfields has been used for many years. 
However the accuracy of the retrieved areal snow depth is not known. This paper 
statistical analyzes the snow gauge data (about 350 gauges) in the Northern Great Plains 
of US and SSM/I derived snow depth. We found that with one gauge within 10,000 km2 
the sampling error is about 20 cm, while the passive radiometer the error is about 10 cm. 
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Abstract 

Accurate estimation of snow mass is important for the characterization of the 

hydrological cycle at different space and time scales. For effective water resources 

management, accurate estimation of snow storage is needed. Conventional snow gauges 

measure snow depth at a point and in order to monitor snow depth in a temporally and 

spatially comprehensive manner, optimum interpolation of the points is undertaken. Yet 

the spatial representation of point measurements at a basin or on a larger distance scale is 

uncertain. Space-borne scanning sensors, which cover a wide swath and can provide 

rapid repeat global coverage, are ideally suited to augment the global snow information. 

Satellite-borne passive microwave sensors have been used to estimate snow depth (SD) 

with some success. The uncertainties in point SD and areal SD of natural snowpacks 

need to be understood if comparisons are to be made between a gauge SD and satellite 



SD. In this paper we address three issues relating satellite estimates of SD and ground 

measurements of SD in the Northern Great Plains of the USA, from 1988-1997. First, it 

is shown that comparing samples of ground measured point SD data with satellite-derived 

25 x 25 km pixels of SD, there are significant differences in SD values even though the 

accumulated data sets showed similarities. Second, from variogram analysis, the spatial 

variability of SD from each data set was comparable. Third, for a sampling grid cell 

domain of 1" x 1" in the study terrain, more than 10 distributed snow gauges per cell are 

required to produce a sampling error of 5 cm or better. This study has important 

implications for validating SD estimates from satellite microwave observations. 

I. Introduction 

With the continued growth in world population and industry development, demands 

on global water resources have increased greatly. For effective water resources 

management there is a need to accurately quanti@ the various components of the 

hydrological cycle at different space and time scales. Snow is a renewable water 

resource of vital importance in large parts of the world and is one of the major 

hydrological cycle components. It is also a major source of global water storage and 

runoff. For example, in the western U.S. snow contributes over 70% of total water 

resources. In order to better predict snow storage and detect trends in the variations of 

water resources, accurate snowpack information with known error characteristics is 

necessary. 

Traditionally, rulers, fmed snow stakes, and snowboard gauges are used to measure 

the snow depth (SD) at a point. In general, point measurements of SD produce high 
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quality data representative of a small location (< 1 Om scale length). In order to monitor 

SD in a temporally and spatially comprehensive manner, optimum interpolation of the 

points must be undertaken. However, the spatial representativity of point measurements 

in a basin or at larger scale is uncertain (Atkinson and Kelly 1997). Furthermore, the 

spatial density of SD measurements in most parts of the world is rather low; thus, the 

accuracy of spatially-integrated point measurements of SD needs to be carefully assessed. 

Space-borne scanning microwave sensors, which cover a wide swath and can 

provide rapid repeat global coverage are ideally suited to augment global snow 

information. For example, passive microwave radiometers such as the Scanning Multi- 

frequency Microwave Radiometer (SMMR) on Nimbus-7 and Seasat-A, and the Defense 

Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) 

have been utilized to retrieve global SD. In order to assess the representativeness of 

satellite-derived SD, it is necessary to determine how and whether the point gauge SD 

measurements can be compared with the space-borne estimated SD that typically 

represent about 25 km by 25 km in area. 

The uncertainties in point and areal SD measurements of natural snowpacks need to 

be understood if comparisons are to be made between a gauge SD and satellite derived 

SD. The statistical variability of the snow depth, as represented by the variogram, has a 

direct effect on the accuracy of the snow validation. Consequently, it is essential that the 

magnitude and cause of any variability is clearly defined for robust global validation of 

satellite-derived SD estimates. In this paper we use sparsely distributed snow gauge data 

fiom the National Weather Service (NWS) Cooperative Station Network and SSM/I- 

derived SD estimates to study the large-scale snow distribution. 
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To understand the snow distribution characteristics from gauge measurements, it is 

necessary to know the gauge density and the defined SD areal accuracy. Geostatistical 

analysis can be used to gain a better understanding of the spatial variability of snow depth 

in large areas, such as river basin size of the Northern Great Plains. Although there are 

large portions of the world where the spatial density of gauges is less then 1 per 10,000 

km2 (approximately the area of one degree latitude by one degree longitude), the aims of 

this study are to understand and quanti@ statistically the uncertainties associated with 

sparse sampling of SD over a regional scale, and to determine how these uncertainties 

affect the validation of global SD estimation from satellite observations and to find out 

how well remote sensing-derived SD can be validated by current gauge data, specifically: 

1) 

2) 

3) 

how well does gauge SD compare with satellite derived SD? 

what are the characteristics of snow spatial distribution? and 

what are the required sampling characteristics of snow gauge measurements 

that can enable the validation of satellite-derived SD, given a pre-defined 

accuracy requirement? 

11. Background 

Any remote sensing technique that can estimate accurately snow storage is of great 

benefit for global water cycle research and water resources applications. With space- 

borne satellite sensor data, global snow measurements can be achieved. Space-borne 

sensors can image the Earth with spatial resolutions varying from tens of meters (e.g. 

visible and infiared spectrometer, synthetic aperture radar) to tens of kilometers (e.g. 
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passive microwave radiometers). Visible and infrared sensor applications to snow are 

limited to clear sky occurrences and are sensitive only to snow surface properties, while 

passive microwave sensors are solar illumination independent and are sensitive to snow 

volume properties. Both remote sensing approaches have been used to monitor snow 

covered areas. With the improvement in satellite instrumentation, regional and local 

scales can now be mapped effectively. Passive microwave sensors have been used to 

monitor continental-scale snow cover area extent in the Northern Hemisphere for several 

years (Chang et al. 1987). However, passive microwave retrieval methods of snow water 

equivalent (SWE) andor SD are less mature than VISAR sensor mapping approaches, 

and often resulting in large uncertainties from retrievals at the global scale. 

Microwave brightness temperature measured by space-borne sensors originates from 

radiation from 1) the underlying surface, 2) the snowpack, and 3) the atmosphere. The 

atmospheric contribution is usually small at microwave frequencies and can be neglected 

over most snow-covered areas, especially at higher latitudes. In this paper, therefore, we 

neglect the atmospheric effects when extracting snowpack parameters. Snow crystals 

within snowpacks are effective at scattering upwelling microwave radiation and the 

microwave signature of snowpack depends on both the number of scatterers and their 

scattering efficiency. The degree of scattering is frequency dependent with higher 

frequency (shorter wavelength) radiation scattered more than lower frequency (longer 

wavelength) radiation. The deeper the snowpack, the more snow crystals there are 

available to scatter microwave energy away from the sensor. Hence, microwave 

brightness temperatures are generally lower for deep snowpacks, with a larger number of 

scatterers, than they are for shallow snowpacks, with fewer scatterers (Matzler 1987; 
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Foster et al. 1997). The scattering effect increases rapidly with grain size, and the 

formation of death hoar, large snow crystal occurs in thin snowpacks subject to cold air 

temperature. This can result in very strong signals from thin snowpacks, as observed by 

Josberger et al. (1 996) in a comparison of microwave observations and snowpack 

observations from the Upper Colorado River Basin. Based on radiative transfer theory, 

Chang et al. (1 987) successfully developed a method to estimate SWE using Sh4MR 

observations. SSM/I data have been used routinely to infer the SWE in many areas of 

Canada (Goodison and Walker 1995). Derksen et al. (2002) found that the time series of 

SSM/I SWE remains within 10 to 20 mm of surface observations in the Canadian 

prairies. Walker and Silis (2001) reported estimated snow cover variations over the 

Mackenzie River basin. Their algorithm was tested using “ground truth” in-situ data and 

shows that the inferred SWE estimates generally underestimate the measured SWE by 

between 10 to 30 mm. The derivation of an accurate algorithm is complicated by the 

snow crystal metamorphism that occurs through the winter (Hall et al. 1986). To model 

this effect, Josberger and Mognard (2002) and Mognard and Josberger (2002) developed 

an algorithm for the U.S. Northern Great Plains that includes a proxy for crystal growth 

based on air temperature. Kelly et al. (2003) coupled a spatially and temporally varying 

empirical grain growth expression with a radiative transfer model to estimate SD in the 

Northern Hemisphere. All of these results encourage us to study further the interaction of 

microwaves with snow parameters to derive a validated algorithm with known errors. 

Ideally, it is recognized that SWE is more closely related to the water resources 

stored in a basin. However, global SWE data sets are not available, rather SD is the 

quantity that is recorded at many weather station locations. SD is measured at a point, 
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usually fiom a ruler or snowboard gauge. In the high latitudes the distributions of liquid 

precipitation (rain) and solid precipitation (snow) are very similar. Rain gauges have also 

been used to record accumulated snowfall although such devices are often subject to 

large uncertainties. Rain gauges are also sparsely distributed around the globe with large 

regional variations in spatial density. For example, in Germany there may be 3-5 stations 

in a 25 by 25 km2 area (Rudolf et al., 1994). In the USA there are some areas with one 

station in 25 by 25 km' while in some areas of Russia, for example, typically there is only 

one station in area 100 by 100 km'. Snow courses provide more detailed measurements 

of snow parameters located at discrete sites along a defined transect. However, they are 

even sparser in occurrence. Thus, with SI) gauge measurements more readily available 

for comparison with satellite estimates, gauges are the prime validation source used in 

this study. Also, since SD is the most widely measured variable, we use the SD form of 

the microwave retrieval algorithm fiom Chang et al. (1 987) in this study. 

111. Snow Field Descriptions and Data Used in the Study 

The Northern Great Plains (NGP) study region covers a geographical area fiom 42"N 

to 49"N and 91"W to 104"W. The test area is about 800,000 km'. This encompasses the 

states of North Dakota and South Dakota and Minnesota. The geomorphology of this 

area is rather homogeneous. For example, the Roseau River in Minnesota and Manitoba 

(1 0,000 W), flows into the Red River of the North. The Roseau basin has low relief (< 

500 m) and has a mixture of cropland and forests (hardwoods and conifers). Recently 

Josberger et al. (1998) reported a comparison of the satellite and aircraft remote sensing 

SWE estimates in this region. They found that in this prairie ecosystem passive 
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microwave observations could be used to estimate SWE. This area, therefore, is ideal for 

studying the relationship between snow gauge measurements and microwave estimated 

snow depths. 

SD retrievals were performed using observations from SSM/I instruments aboard 

Defense Meteorological Satellite Program (DMSP) F-8, F-1 1 and F-13 platforms. Gauge 

snow depth measurements, archived by the U.S. National Weather Service ( N W S )  and 

obtained from the co-operative network of observers were collected for the study region. 

These ground measurements consist of daily weather observations of temperature, 

precipitation, snowfall and snowpack thickness at about 350 stations in the area, although 

this number varies fiom year to year. Typically, the snow depth information is collected 

daily but with a long time lag before the data become available. Figure 1 shows the 

location of the snow gauge data within the NGP study region. All data were 

georeferenced to the Equal Area Scaleable Earth grid (EASE-grid). The SSM/I data were 

obtained from the National Snow and Ice Data Center (NSIDC) in 25 x 25 lan EASE-grid 

projection (Armstrong and Brodzik 1995). With the exception of 1994, our analysis 

focused on the average of three days (10-12 February) for each year of 10 years (from 

1988 to 1997). This averaging process ensured complete coverage of the study region for 

the selected date. In 1994, because of incomplete SSM/I coverage, the 3-day average 

was shifted to 27-29 January. These three days were chosen since they represent a time 

in winter when the snowpack is potentially at its most stable and extensive, with minimal 

liquid water content. By undertaking the analysis for the same time in consecutive years, 

potentially consistent biases in the data (either satellite or ground) are more likely to be 

identified. 
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IV. Data Analysis 

(1) ComDarisons of gauge SD measurements and single Dassive microwave SD 

estimates 

Statistical analysis of both the gauge SD and SSMA SD, for each of the ten years 

(from 1988 through 1997) and the ten-year composite show that the SSMA estimates 

generally compare well with the gauge measurements. Table 1 gives summary statistics 

for each year plus composite averages. The mean gauge SD is highly variable from year 

to year (1.5 cm to 45.4 cm). In the ten-year period, there were 3 years when SD was less 

than 10 cm, five years when SD was between 10 cm to 30 cm, and two years when SD 

was greater than 30 cm. The corresponding range of SSMA estimated mean SD (1.7 cm 

to 43.4 cm) was very similar to the gauge measurements, with the total composite mean 

SD from SSMA estimates almost identical to that of the gauge data. The correlation 

between average yearly gauge and SSM/I SD values for the period is 0.83. 

Differences of the gauge SD and SSMA derived SD varies from year to year. The 

maximum difference of the means was 18.4 cm (1994). For 1996 the minimum 

difference of the mean was found to be 0.1 cm. Generally, there is a greater variation of 

snow depths observed for the gauge data that the satellite derived estimates. This is 

expected since the variability of snow at a point tends to be greater than that observed for 

a footprint which is a smoothed, integrated signal from within an instantaneous field of 

view. A statistical hypothesis test, the paired t-test, was used to determine whether or not 

there were significant differences between the gauge and SSMA derived SD. The paired t 

statistic (t) is defmed as 
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( o l n 2 )  

where p and care the mean and standard deviation of the paired differences of the two 

variables (gauge SD and SSM/I SD) and n is the number of data pairs. For n 

follows approximately a normal distribution (in this case n > 250). The hypothesis of 

difference is rejected if It\ < 1.96. The paired t-statistics are included in Table 1. 

Inspection of the t values shows no systematic pattern from year to year. There are seven 

years with It1 > 1.96 and three years (1 990,1996 and 1997) with It1 < 1.96. For those 

years where the value of t  is larger than 1.96, there are a significant difference between 

the gauge SD and SSM/I derived SD at the 95% level confidence. The t-test value is - 

0.04 for the composite ten year data set. The mean difference between the gauge SD and 

satellite SD is 0.17 cm. The standard deviation of the difference is 18.4 cm, which is 

slightly larger than both the accumulated gauge and SSM/I snow depth means (1 7.2 cm 

and 17.4 cm, respectively). This was expected and reflects the difference between point 

and areal estimation modes. 

30 t 

Gauge measurement error is an important factor explaining why gauge and satellite 

data have different statistical characteristics. Snow depth measured at a gauge reflects 

snow accumulation subject to local micro-scale processes, while SSM/I-estimated snow 

depth reflects average snow conditions, subject to controls at the local to regional scale. 

For example, wind speed is the most important environmental factor contributing to the 

under-measurement of snow at a point (Goodison et al. 1989). In the NGP region, 
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frequent high wind speed is common and causes a system bias error. At cooperative 

stations typically snow rulers or snowboards are used to measure SD. To obtain a 

representative SD measurement of new snow under drifting conditions, careful judgment 

by the observer is required. 

f2) An assessment of the suatial variation of pauge and uassive microwave snow deuth 

Large spatial and temporal variations exist in global and local snow cover extent and 

volume (Frei and Robinson 1999). Errors of these variations are not very well 

understood, although it is important for better climate observation. It is necessary to 

better understand the spatial characteristics of different scales of SD. Jacobson (1999) 

defined five spatial scale lengths of weather parameters: planetary scale (> 10,000 km), 

synoptic scale (500 to 10,000 km), mesoscale or regional variation (2 km to 2000 km), 

microscale (2mm to 2 km), and molecular scale (< 2mm). In the NGP study region, we 

are concerned with the characterization of snow distribution at the microscale and 

mesoscale. 

From the t-test values of the previous section, mesoscale (SSMA) and microscale 

(gauge) comparisons of snow depth revealed that for seven out of the ten years, 

significant differences existed between these two data sets. However, when the data were 

aggregated over a longer time period (ten years), the Jtl value was less than 1.96 

suggesting that overall the two data sets are not significantly different. To further 

understand this characteristic, analysis of the spatial variability of the two data sets was 

undertaken. 
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The variogram, the central tool of geostatistics, can be used to examine the spatial 

dependency of a variable. It provides an unbiased description of the scale and pattern of 

spatial variation. Observations of a selected property are often modeled by a random 

variable and the spatial set of random variables covering the region of interest is known 

as a random function (I& and Srivastava 1989). A sample of a spatially varying 

property is commonly represented as a regionalized variable, (e.g., as a realization of a 

random function). The semi-variance (y) may be defined as half the expected squared 

difference between the random functions Z(x) and Z(x+h) at a particular lag h. The semi- 

variogram (hereafter referred as variogram), defined as a parameter of the random 

function model, is then the function that relates semi-variance to lag: 

y(h) = 1/2 E[(Z(~)-z(x+h)}~], 

where E is the ensemble average of pairs. The sample variogram y(h) can be estimated 

for p(h) pairs of observation or realizations, (Z(xl+h),l=1,2,. . ..p(h)} by: 

A mathematical function or model is usually fitted to the experimental values, which 

are discrete, to represent the true variogram of the region, which is continuous. The 

experimental values are often erratic because they are subject to error. In general, the 

variogram model is either unbounded (increases indefinitely with lag) or bounded 

(increases to a maximum value of semivariance, known as the sill, at a finite positive lag, 
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known as the range a). The sill is equal to the apriori variance (that defined for an 

infinite region) of the random function (RF), while the range indicates the limit to spatial 

dependence, beyond which data are statistically uncorrelated. Often the model 

approaches and intercepts the ordinate at some positive value of semivariance known as 

the nugget variance cg. The nugget variance results from measurement error (Atkinson, 

1993), the uncertainty in estimating the variogram from a sample, the uncertainty in 

model fitting, and spatially dependent variation acting at scales finer than the sampling 

interval. The structured component of variation cI is then the sill minus the nugget 

variance, so that co + cI = sill. 

For each data set, variograms were computed for the gauge and SSMA data. As an 

example, Figure 2 shows the variograms with spherical models fitted for the gauge data 

and the SSMA estimates for 1988. Authorized models were fitted to all experimental 

variograms using a least squares criterion with the exception of the gauge data for 1990 

and 1991 when the experimental variograms were unbounded. The reason for the lack of 

structure for these two years is probably because there was so little snow accumulated at 

the stations (averages of 1.8 and 1.5 cm). These averages are substantially comprised of 

0 cm measurements such that very little spatial variation was present. For two data sets 

(1 996 gauge and 1997 SSM/I), data were de-trended using first order polynomials; this 

was because a trend in the data produced unbounded variograms. Unlike the 1990 and 

1991 data for the gauge measurements, appreciable snow accumulation was present in 

both 1996 and 1997, and clear direction snow accumulation gradients were present (NE 

to SW in the case of the 1996 gauge data and NW to SE for the SSM/I estimates). 
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The main parameters of interest for the comparative analysis were the nugget 

variance and the range. Variograms were computed using GSTAT software (Pebesma 

and Wessleing 1998) and estimated to a maximum lag of 1000 km. Spherical variogram 

models were fitted to the variogram using the weighted least squares criterion. Table 2 

shows the model ranges and nugget variances for the gauge and the satellite snow depth 

data set. The variograms for the SSM/i and gauge SD estimates for each of the 10 days 

show a broad similarity with respect the mean estimated snow depths for each year. For 

example, the nugget variance increases with increasing mean snow depth for both data 

sets suggesting that representation of micro-scale effects of snow distribution is not 

possible for thicker snowpacks. The range decreases with increased mean snow depth in 

both gauge and SSM/I data sets also suggesting that snow depth variability is smaller 

over short distances only when the snow is thick. For shallower snowpacks, the spatial 

variability is small over comparatively larger distances. 

With respect to differences in variogram structure between gauged and satellite 

derived snow depth data, four variogram pairs (SSM/I estimated and gauge measured) 

have range differences less than 200 km, one pair has a range difference between 200 and 

300 km, two have differences between 300 and 400 km and one pair has a difference 

between 400 and 500 km. Furthermore, applying the paired t-test to the SSM/I and gauge 

variogram range data in Table 2 gives a It1 value of 0.13 and the critical t value for a 

sample of 8 is 2.37. These results suggest that there is some agreement between the 

spatial variability of SD estimated from the SSMh retrievals and gauge measurements. 
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13) Error analvsis and determination of the reauired sarndinp characteristics of snow 

game  measurements 

Before determining how many snow gauges are needed to achieve a specified SD 

areal accuracy, it is necessary to understand the error characteristics of satellitederived 

SD estimates and gauge SD measurements. Data from both SD sources are subject to 

systematic and non-systematic or random errors. For snow gauge SD measurements, 

there might be both systematic and random errors associated with each measurement. 

Systematic errors from gauge measurement data are attributed to the situation of the ruler 

and its representativity of the local conditions (Goodison et al. 198 1). Ideally, several 

measurements are needed to produce a representative sample but such information is 

usually not available in the cooperative data archive so that inferences about gauge 

systematic errors cannot be made. For satellite SD estimates, both systematic and random 

errors are associated with the retrieval algorithm and are referred to as retrieval errors 

(Bell et al. 1990). Systematic biases are known to exist in relation to vegetation cover and 

snowpack parameterization of the algorithms. While the quantification of these errors is 

the focus of ongoing studies (for example, see Derksen et al. 2003), in general, the error 

biases are consistent. For the satellite SD estimates, therefore, we assume a constant 

systematic error because the study location and the study date each year are constant. In 

this study, therefore, the error term in both data sets that we use to determine the accuracy 

achievable from a predefined number of gauges is the random error term of the total 

error. 

A technique for estimating the random error of rainfall estimates, described in Chang 

et al. (1993) requires a pair of independent variables (Le. rain gauge measurements and 
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satellite estimates). Applying their methodology to snow depth retrievals, gauge SD 

estimates and satellite SD estimates are denoted as g and s respectively and it is assumed 

that there are random errors associated with these estimates. Thus, we can write 

g = < g > + e ,  cm 

s = < s > + e ,  cm (4) 

where < > represent ensemble averaging taking over different number of gauge 

categories, and e, and e, are the random errors associated with independent SD estimates 

of the gauge and satellite variables. Assuming that the estimates are unbiased with 

uncorrelated errors, 

< e  g > = < e , > = O  and 

< e, e, > = 0. 

The error terms e, and e, contain errors due to gauge sampling and satellite retrievals 

from the ensemble averaging. We can express the mean square difference of gauge 

estimates and satellite estimates as 

Equation (6) states the mean square difference between the gauge SD and satellite SD 

estimates is the variance due to the random error. 
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For the ten-year data set (1988 to 1997), 1" x 1" grid cells (approximately lo4 km') 

were used as the study fiamework to investigate the random errors. All grid cells were 

classified according to the number of gauges within the cell, a measure of the spatial 

density of gauges. The frequency distribution of gauges per cell varied fiom one gauge 

to 10 gauges per cell and is plotted in Figure 3. The most frequent category was 3 gauges 

per cell (159 cells). Typically 22 SSM/I SD retrieval points were located within each 1" 

x 1" grid cell. 

Table 3 shows the number of cells with n gauges, the mean and standard deviation of 

gauge SD and satellite SD, the mean difference between the gauge SD and satellite SD 

(mean difference = < g > - < s >) and the standard deviation of the differences, the root- 

mean-square of the difference (RMSD) between gauge and satellite SD (RMSD = < (g - 

s ) > 
2 1/2 ) and the total error can be written as 

The paired ?-statistic of the means was also computed. 

Overall, the mean difference and RMSD between gauge and satellite SD was 1.1  cm 

and 16.1 cm, respectively. The mean difference between gauge SD and SSWI SD for 

each category is relatively small. From the paired t-test, none of the It1 values was greater 

than 1.96 suggesting there was no significance difference between the mean gauge and 

satellite SD estimates. Additionally, the standard deviation of the mean difference (16.1 

cm) is about the same as the mean of satellite and gauge SD for each category (1 8.2 cm). 

An important characteristic of these data is that the RMSD decreases as the number of 
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gauges per cell increases suggesting that the number of gauges within a box might 

influence estimated random error. The total error decreases from 20.4 cm for one gauge 

per cell to 10.0 cm at 9 gauges per cell supporting the possibility that the number of 

gauges might influence the estimated error. 

The number of point measurements needed to represent a physical parameter within 

a pre-defined error range depends on the spatial variability within the area and the 

accuracy requirements. For precipitation studies, there have been several studies that 

addressed the sampling errors of the spatial variance of precipitation. In precipitation 

estimates, Bell et al. (1 990) reports that sampling error dominates the total error. Bell et 

al. (1 990), Huffman (1 997) and Chang and Chiu (1 999) reported that the relationship 

between sample error of spatial variance (E)  and the number of samples is of the form 6 

- lln for precipitation. Rudolf et al. (1 994) reported a similar error estimation 

relationship of the form 6 - lln'.'' in a 2.5" x 2.5" grid domain of gauge precipitation 

data. In this snow study, we attempt to determine the number of samples required for SD 

estimates at a 1" x 1" grid domain within a limit of sampling error E. To be 95% 

confident that the true mean is within 

(n) required is 

E of the observed mean, the number of samples 

E' = (1.960)' In = 40'1n (8) 

where (T is the standard deviation of the variable (Snedecor and Cochran 1967). 

From Eq. 7, the total error < e2 >1'2 can be calculated by the square root of the sum of 

gauge error < e l  > and satellite error < e: >. The gauge mean error is dominated by 
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gauge sample configuration, especially the gauge spatial density. The satellite error is 

caused by algorithm error and is not directly related to the gauge spatial density. Since 

the snowfield of the NGP area is rather uniform (relatively homogeneous low stand 

vegetation and snowpack properties), it is possible to make the assumption that the 

satellite algorithm error is probably about the same for all grid cells. By adjusting the e, 

and optimizing the fit using the least squares criterion of eg” in proportion to 1 /n, then e, 

and e, can be individually estimated. The calculated e, is 8.8 cm and eg’ = 466.7h. 

Figure 4 shows the estimated sampling error for different numbers of gauges per grid 

cell. The gauge error varies from about 20 cm for one gauge per grid cell and decreases 

to 7 cm for ten gauges per cell. In other words, in order to achieve 5 cm accuracy more 

than 10 gauges within a grid cell are required. This is an important outcome since it 

defines a limitation to the error characteristic as a function of the gauge spatial density at 

this grid cell scale (ie. 1 O x 1 O of latitude and longitude). 

V Summary and Discussion 

Ten years of gauge SD data were used to evaluate the single SSM/I footprint derived 

SD for Northern Great Plains snowfields. From year to year comparisons, seven out of 

ten years had significant differences between gauge and SSM/I SD estimates. The mean 

gauge SD for ten years composite was 17.2 cm with a standard deviation 21.7 cm, while 

the SSM/I estimated SD was 17.4 cm with a standard deviation of 17.4 cm. The ten years 

mean difference between gauge SD and SSM/I estimated SD was 0.2 cm, which is not 

statistically significant. 
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The variograms of gauge and SSMA derived SD estimates were comparable. The 

ranges of gauge and S S M  vary within of 500 km of each other. In general, the ranges 

decreased as the snow depth increased suggesting that for thinner snow packs, the 

correlation lengths increase while for thicker snowpacks they decrease. Also, the nugget 

variances were larger for thicker snowpacks suggesting that there is more unresolved 

variation at each sample point when greater snow accumulations are present. 

Comparisons of the 1 O x 1 O latitude-longitude gridded data showed that the yearly 

differences of gauge SD and SMM/I SD were not significant. The ten-year composite 

mean and standard deviation of the gauge SD was 17.7 cm and 19.7 cm respectively, and 

the S S M  estimated SD was 18.8 cm and 16.9 cm, respectively. The mean difference 

gauge and satellite estimate of SD was 1.1 cm and was not significant. The standard 

deviation of the difference between gauge and SSMA SD was slightly smaller (16.1 cm) 

than the comparison for point data. 

This research suggests that the SSWI data can be used effectively to map snow 

depth in the NGP area. Snow depth spatial variability can be captured by the SSM/I 

retrieved snow depth that has a calculated error of 8.8 cm. In comparing the SSWI 

estimates with gauge estimates, the advantage of increasing the number of gauges within 

a grid cell is reported. The sampling error of gauge SD is about 20 cm for one gauge, 7 

cm for 10 gauges and more than 10 gauges for less than 7 cm on a 1" x 1" grid cell 

domain. However, the characteristic curve relating estimation error with number of 

gauges per cell curve shows that for the Northern Great Plains area, greater than 10 

gauges per cell, the sampling error does not reduce quickly. In the context of global 

snow depth estimates, this research demonstrates that it is rather difficult to quantify the 
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global SD accuracy by using only the limited snow gauge data where gauge density is 

often less than one gauge per 1 O x 1 O of latitude and longitude. 

The Advanced Microwave Scanning Radiometer (AMSR) was launched on-board 

the Japanese Advanced Earth Observing Satellite-I1 (ADEOS-11) and the United States 

Earth Observation System (EOS) Aqua satellite in 2002. AMSR can provide the best 

ever spatial resolution multi-frequency passive microwave radiometer observations from 

space (1 8 GHz channel instantaneous field of view (IFOV) is 27 km x 16 km and 36 GHz 

channel IFOV is 14 km x 8 km). This capability provides us with an opportunity to 

estimate surface snow mass quantities at finer spatial resolutions than have been possible 

on previous missions and so represents an opportunity to improve snow depth 

observations both with respect to spatial resolution and accuracy of retrieval. However, 

for field experiments designed to test satellite observations, the ground sampling network 

requires careful planning to ensure snow cover parameters such as SD are accurately 

measured. 

Acknowledgements: 

This work is supported by the NASA Office of Earth Sciences. 

References: 

Armstrong, R. L. and M. J. Brodzik, 1995: An earth-gridded SSMII data set for 

cryospheric studies and global change monitoring. Advances in Space Research, 

10, 155-163. 

21 



Atkinson, P.M., 1993: The effect of spatial resolution on the experimental variogram of 

airborne MSS imagery, Int. J. Remote Sensing. 14, 1005-101 1. 

Atkinson, P.M. and R.E.J. Kelly, 1997: Scaling-up point snow depth data in the U.K. for 

comparison with SSMA imagery, Int. J. Remote Sensing. 18,437-443. 

Bell, T.L., A. Abdullah, R.L. Martin, and G.R. North, 1990: Sampling errors for 

satellite-derived ropical rainfall: Monte Carlo study using a space-time stochastic 

model. J. Gephys. Res., 95,2195-2205. 

Chang, A.T.C. and L.S. Chiu, 1999: Nonsystematic errors of monthly oceanic rainfall 

derived fiom SSMA. Mon. Wea. Rev., 127,1630-1638. 

Chang, A.T.C., L.S. Chiu, and T.T Wilheit, 1993: Random errors of oceanic monthly 

rainfall derived fiom SSMA using probability distribution functions. Mon. Wea. 

Rev., 121,2351-2354. 

Chang, A.T.C., J.L. Foster and D.K. Hall, 1987: Nimbus-7 derived global snow cover 

parameters. Annals of Glaciology, 9 , 3 9 4 .  

Derksen, C., E. LeDrew, A. Walker, and B. Goodison, 2001: Time-series analysis of 

passive microwave derived central North American snow water equivalent (SWE) 

imagery. Annals of Glaciology, 34, 1-7. 

Derksen, C., A. Walker, and B. Goodison, 2003: A comparison of 18 winter seasons of 

in situ and passive microwave-derived snow water equivalent estimates in 

Western Canada. Remote Sensing of Environment, 88,27 1-282. 

Foster, J.L, A.T.C. Chang and D.K. Hall, 1997: Comparison of snow mass estimates 

fiom a prototype passive microwave snow algorithm, a revised algorithm and 

snow depth climatology. Remote Sensing of Environment, 62, 132-142. 

22 



Frei, A. and D.A. Robinson, 1999: Northern hemisphere snow extent: regional variability 

1972-1994. Int. J. Climate, 19, 1535-1560. 

Goodison, B. E., H.L. Ferguson, and G.A. McKay, 1981: Measurement and Data 

Analysis. Handbook of Snow: Principles, Processes, Management and Use, D. 

M. Gray and D. H. Male, ed., Pergamon Press, 191-274. 

Goodison, B.E. and A.E. Walker, 1995: Canadian development and use of snow cover 

information fiom passive microwave satellite data. Passive Microwave Remote 

Sensing of Land-Atmosphere Interactions, B. Choudhury, Y. Kerr, E. Njoku, and 

P. Pampaloni, Ed., VSP Press, the Netherlands, 245-262. 

Goodison, B.E., B. Sevruk and S. Klemm, 1989: WMO solid precipitation measurement 

intercomparison: Objectives, methodology, analysis. Atmospheric Deposition, 

IAHS Publ. No. 179, Wallingford, U.K., 57-64. 

Hall, D.K., A.T.C. Chang and J.L. Foster, 1986: Detection of the depth hoar layer in the 

snowpack of the Arctic Coastal Plain of Alaska, U.S.A., using satellite data. J. 

Glaciology, 32,87-94. 

Huffman, G.J., 1997: Estimates of root-mean-square random error for finite samples of 

estimated precipitation. J. Applied Metero., 36, 1191-1201. 

Isaaks, E.H. and R.M. Srivastava, 1989: Applied Geostatistics, Oxford University Press, 

541pp. 

Jacobson, M.Z., 1999: Fundamentals of Atmospheric Modeling, Cambridge University 

Press, 656pp. 

Josberger, E.G. and Mognard, N.M., 2002: A passive microwave snow depth algorithm 

with a proxy for snow metamorphism. Hydrological Processes, 16, 1557-1568. 

23 



Josberger, E.G., P. Gloersen,, A. Chang, and A. Rango, 1996: The effects of snowpack 

grain size on satellite passive microwave observations from the Upper Colorado 

River Basin. J. Geophys. Res., 101, C3: 6679-6688. 

Josberger, E.G., N.M. Mognard, B. Lind, R. Matthews and T. Carroll, 1998: Snowpack 

water-equivalent estimates from satellite and aircraft remote-sensing 

measurements of the Red River basin, north-central U.S.A. Annals of Glaciology, 

26, 119-124. 

Kelly, R.E.J., A.T.C. Chang, L. Tsang, and J.L. Foster, 2003: Development of a 

prototype AMSR-E global snow area and snow volume algorithm. ZEEE Trans. 

Geoscience and Remote Sensing, 41,230-242. 

Matzler, C., 1987: Applications of the interaction of microwave with the natural snow 

cover. Remote Sensing Reviews, 2,259-387. 

Mognard, N.M., and E.G. Josberger, 2002: Northern Great Plains 1996/97 seasonal 

evolution of snowpack parameters from passive microwave measurements. 

Annals of Glaciology, 34, 15-23, 

Pebesma, E.J. and C.G. Wesseling, 1998: GSTAT, a program for geostatistical 

modeling, prediction and simulation. Computers and Geosciences, 24, 17-3 1.  

Rudolf, B., H. Hauschild, W. Rueth, and U. Schneider, 1994: Terrestrial precipitation 

analysis: Operational method and requires density of point measurements. NATO 

AS1 Series, Vol. I 26, Global Precipitation and Climate Change, Eds. M. Desbois 

and F. Desalmand, Springer-Verlag Berlin Heidelberg, 173-1 86. 

Snedecor, G.W. and W.G. Cochran, 1967,: Statistical Methods, sixth ed., Iowa State 

University Press, Ames, Iowa., 593pp. 

24 



Walker, A.E. and A. Silk, 2001 : Snow cover variations over the Mackenzie River basin 

derived from SSIW passive microwave satellite data. Annals of Glaciology, 34, 

8-14. 

25 



Figure 1 : Location of the snow gauge collection points within the Northern Great Plains 

study region. 
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Figure 2: Variograms of a) gauge measurements of snow depth, and b) SSM/I estimates 

of snow depth for the Red River basin for 12 February, 1988. 
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Figure 3: Frequency distribution of number of gauges per cell 
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Figure 4: Estimated gauge SD error vs. number of gauges. 
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Table 1 : Ten years of mean (p) and standard deviation (0) of gauge and S S M  snow 

depth estimates and the paired t-test values. 

Table 2 Variogram characteristics of gauge and SSM/I-retrieved snow depth data 
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